Mark scheme – Properties of Materials (F)

Questio n		io	Answer/Indicative content	Marks	Guidance
1			В	1 (AO2.1)	
			Total	1	
2			D	1 (AO1.1)	
			Total	1	
3			в	1 (AO2.1)	Examiner's Comments Candidates found the unit conversion very difficult. All responses seen, A being the most common.
			Total	1	
4	а		Layers / metal ions √ slide over each other √	2 (AO1.1)	IGNORE metal atoms / electrons Mark
					independently
	b	i	ionic√ oppositely charged ions√	2 (AO1.1)	ALLOW oppositely charged particles / has + and – particles IGNORE contains anions and cations (in diagram) IGNORE oppositely charged atoms / molecules DO NOT ALLOW positive nucleus and negative electrons Mark independently
	ii		Any two from:	2 (AO1.1)	Reference to intermolecular forces / bonds /

			Idea of many strong \checkmark		molecular forces scores 0 for question
			covalent bonds √ (which) require a lot of energy to break √		ALLOW many covalent bonds break at high temperatures for 2 marks ALLOW idea that each atom has 4 strong covalent bonds for 2 marks ALLOW giant covalent structure for 1 mark
		iii	No delocalised electrons / no sea of electron / no mobile charge carriers / ions / electrons structure contains atoms √	1 (AO1.1)	IGNORE just free electrons
			Total	7	
5	а	i	A AND D √	1 (AO3.1a)	
		ï	Any two from: Conducts electricity in molten state √ Does not conduct electricity in solid state √	2 (AO3.2b)	ALLOW dissolve in water
			High melting point \checkmark		
	b	i	Add water (and stir) ✓ Filtration √	3 (AO3.3a 1.2	
			B collects on filter paper \checkmark	3.3a)	
<u> </u>			Distillation OR evaporation OR heating √	2	
		ii	Removes water OR dries C OR removes some water and leave to crystalise \checkmark	2 (AO1.2 3.3a)	ALLOW boiling
			Total	8	
6	а	i	Nanoparticles have diameter between 1 nm – 100 nm / idea that (diameter of) DNA is more than 1 nm but less than 100 nm \checkmark	2 (AO 1.1)	ALLOW has at least one dimension on

		Water (molecule) is too small / 0.27 nm is less than 1 nm / idea that 0.27 nm is not in range 1 nm – 100 nm √		the nanoscale Examiner's Comments Higher ability students appreciated that a water molecule is too small to be a nanoparticle but very few candidates discussed the dimensions of a nanoparticle. Many omitted the question. Incorrect responses included: water molecules cannot be found on their own, DNA can be seen but water molecules can't and water being a liquid.
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3100 award 2 marks 100000 ÷ 32 √ = 3100 (2 significant figures) √	2 (AO2.2)	ALLOW 3125 for 1 mark ALLOW 0.00032 for 1 mark (correct sig figs from incorrect working out, ie 32 ÷ 100000) Examiner's Comments More able candidates calculated the value correctly, but many did not give their answer to 2 significant figures.
b		Could be breathed in / Idea of absorbed by skin / Idea of absorbed into bloodstream / Take a long time to break down in the environment √	1 (AO2.1)	ALLOW cannot see so may leave (areas of) skin unprotected ALLOW idea that we don't know the

			long term risks IGNORE idea that they are not fully understood / there could be side effects / idea that they may react with skin / harmful to humans
			<u>Examiner's</u> <u>Comments</u>
			Higher ability candidates appreciated that the smallness of the nanoparticles means they are easily absorbed into the bloodstream or body. Many thought they would irritate or react with the skin without appreciating that they could not be sold where this true. Side effects, particles too small to cover the skin and non-understanding of nanoparticles were common non- creditworthy responses.
			Units not needed
	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.12 OR 0.12:1 or 1:8.3 award 4 marks	4	ALLOW surface area = 1.5 × 10 ⁴ nm ²
6	Surface area = $6 \times 50^2 = 15000 \checkmark$	(AO3 ×	ALLOW volume = 1.25 × 10 ⁵ nm ³
U	Surface area / volume ratio = 15000 ÷ 125000 √	2.2)	ALLOW ECF from incorrect surface area and/or volume
	= 0.12 or 0.12:1 or 1:8.3 √	(AO1.2)	ALLOW any ratio that simplifies to 0.12:1 eg 3:25 or 1.5:12.5 for 4 marks DO NOT ALLOW ratio wrong way

				round eg 1:0.12
				<u>Examiner's</u> <u>Comments</u>
				Higher ability candidates calculated both correctly and determined a ratio. Common errors included calculating the surface area for one face only and missing 0's on the volume. Most showed the steps of their working and many then scored follow through marks for using their values to determine a ratio. A significant number omitted the question.
		Total	9	
7	а	Any two from: Conducts electricity because touchscreens need to be able to conduct electricity ✓ High strength so screen does not break when dropped/ so doesn't wear off / rub off / crack from pressure of fingers ✓ Transparent so can see light through the display ✓	2 (AO3.2a)	ALLOW doesn't break easily ALLOW can see work/can see through it Examiner's Comments Many candidates gained at least partial credit, usually for the transparency of the screen so that the display could be seen. Some candidates listed the properties from the table with no application to the touch screen.

С	i	Buckminsterfullerene / bucky ball √	1 (AO1.1)	ALLOW C ₆₀ IGNORE fullerene Examiner's Comments Candidates found this very difficult and a significant number omitted the question. Common non-creditworthy responses included: fullerene, graphene, carbon, giant covalent.
	ii	Has many atoms joined together (by covalent bonds) √ Arranged in a repeating pattern √	2 (AO1.1)	ALLOW all atoms joined together / each/every C atom joined together DO NOT ALLOW imf Examiner's Comments Candidates found this extremely difficult with few gaining credit and a significant number omitted the question. Discussion of bond strength, four bonds, layers, large and intermolecular forces were seen alongside a range of guesses.
0	i	Many strong (covalent) bonds ✓ A lot of energy needed to break the bonds √	2 (AO1.1)	ALLOW each/every C bonded to 4 C atoms (ie network idea) / many bonds / network of bonds / bonds throughout structure √ strong (covalent) bonds √ DO NOT ALLOW IMF/ionic Examiner's

						<u>Comments</u>					
						Candidates found this difficult. Higher ability candidates knew that the bonds were strong but few appreciated the concept of a high number of the strong bonds giving it hardness.					
											IGNORE IMF
											Examiner's Comments Higher ability candidates gained credit. Non-
		ii	Layers slid	le over ea	ch other / v	veak forces	s between t	he layers √		1 (AO1.1)	creditworthy responses included: layered structure, carbon atoms move, intermolecular forces between the layers, weak covalent bonds between layers and weak bonding.
			Total			8					
8			ldea that t end (1) otherwise	hermometo temperatu	erature at	2	ALLOW do not stir with thermometer (1) as it is fragile (1) ALLOW lag the beaker (1) to reduce energy loss (1)				
			Total								
9			liquid (1) liquid abov	/e −114 °C		2					
			Total			1					
			Particle	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electronic structure		
			A	11	23	. 11	12	11	2.8.1		one mark scored for
10	а		В	9	19	9	10	9	2.7	4	each correct line
			C	17 13	37 27	17 13	20 14	17	2.8.7		
									2.0		
	b		particle A – one electron in outer shell or energy level (1) particle D – has more protons than electrons (1)								

2.3 Properties of Materials (F)

	с		group 7 (1) as 7 electrons in outer shell (1) period 3 (1) as 3 shells occupied (1)	4	
			Total	8	
11			idea that does not show arrangement in space / is 2-dimensional only (1) bond angles are incorrect (1)	2	
			Total	2	
12			Mass of fuel needed to boil water (g) = energy needed to boil water (J) / energy per gram = 63000 / 50000 (1) = 1.2 g (1)	3	
			Since 3 g in burner, this is enough propane / AW (1)		
			Total	2	
13	а		During this reaction, the oxidising agent is oxygen and the reducing agent is magnesium (1)	1	
	b		$2Mg(s)$ (1) + $O_2(g)$ (1) \longrightarrow $2MgO(s)$	2	
			Total	8	
14			С	1	
			Total	1	
15			A	1	
			Total	1	
16		i	To allow a comparison between with and without the added substance (1)	1	
		ii	Idea that the rate of reaction will change if concentration is changed (1)	1	It is a fair test is not sufficient ALLOW if concentration is increased the rate of reaction is increased ALLOW to ensure there are the same number of acid particles present / same number of acid particles per unit volume
		iii	Copper Because the reaction is faster (1)	2	No marks for copper on its own If substance other
			There is no change in appearance (1)		than copper given

				then 0 marks for the question
	iv	Measure mass of catalyst before and after (1)	1	
	v	(Relative rate) between above 1 and below 10 because of smaller surface area / less exposed particles / less collisions (2)	2	No marks for the prediction on its own No marks for whole question if prediction incorrect
		Total	7	